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Figure 1. MotionReFit, a universal framework for motion editing that handles various scenarios simply from textual guidance, offering
both spatial and temporal editing capabilities. MotionReFit is supercharged with our proposed MotionCutMix training strategy, which
leverages large-scale unannotated motion databases to augment the scarce motion editing triplets, enabling robust and generalizable editing.

Abstract

Text-guided motion editing enables high-level seman-
tic control and iterative modifications beyond traditional
keyframe animation. Existing methods rely on limited pre-
collected training triplets (original motion, edited motion,
and instruction), which severely hinders their versatility in
diverse editing scenarios. We introduce MotionCutMix, an
online data augmentation technique that dynamically gen-
erates training triplets by blending body part motions based
on input text. While MotionCutMix effectively expands the
training distribution, the compositional nature introduces
increased randomness and potential body part incoordina-
tion. To model such a rich distribution, we present Mo-
tionReFit, an auto-regressive diffusion model with a mo-
tion coordinator. The auto-regressive architecture facili-
tates learning by decomposing long sequences, while the
motion coordinator mitigates the artifacts of motion compo-
sition. Our method handles both spatial and temporal mo-
tion edits directly from high-level human instructions, with-
out relying on additional specifications or Large Language
Models (LLMs). Through extensive experiments, we show
that MotionReFit achieves state-of-the-art performance in
text-guided motion editing. Ablation studies further verify
that MotionCutMix significantly improves the model’s gen-
eralizability while maintaining training convergence.

1. Introduction

Text-guided motion editing has emerged as a fundamen-
tal task in computer vision and animation [7, 26, 70], en-
abling creators to perform semantic edits (e.g., altering the
right-hand movement to a circular motion) and style edits
(e.g., performing the motion in an angry style) through nat-
ural language instructions. Despite recent advances, cur-
rent approaches [7, 56, 70] face three critical limitations in
achieving efficient, flexible, generalizable, and natural mo-
tion editing.

First, following InstructPix2Pix [10], existing meth-
ods [6, 7] rely on fixed triplets of original motion, edited
motion, and editing instructions. This dependency severely
restricts their ability to generalize across diverse scenarios,
especially for style edits and novel motion-instruction com-
binations. Second, current models require explicit spec-
ification of body parts as auxiliary information, limiting
their capability to autonomously comprehend high-level se-
mantic instructions. Third, generating edited motions with
smooth spatial-temporal transitions remains challenging.

To address these limitations, we introduce MotionCut-
Mix, a training technique that synthesizes novel triplets by
blending body parts from multiple motion sequences. This
approach leverages abundant unannotated motion data to
augment expensive annotated editing triplets. Specifically,
we employ a soft-mask mechanism for spatial blending of
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body parts, producing dynamically composited triplets of
original motion, edited motion, and corresponding language
instruction. This enables end-to-end editing using purely
natural language input.

However, training with MotionCutMix introduces two
potential side-effects in motion generation: increased ran-
domness and body part incoordination. To address these
issues, we propose MotionReFit (Motion REgeneration
From Input Text), an auto-regressive conditional diffusion
model accompanied by a motion coordinator, as Fig. 1
shows. By employing an auto-regressive strategy, the mo-
tion is generated segment by segment, significantly facili-
tating convergence during training by decomposing long se-
quences. This approach also enables temporal editing with
a smooth transition. To mitigate the incoordination in gen-
erated motion, we train a motion coordinator as a discrim-
inator to assess whether a motion segment is the result of
composition. This discriminator is used to refine the diffu-
sion process as guidance, encouraging the generated motion
segments to adherently resemble the pattern of original mo-
tions and avoiding model collapses to unnatural mode.

We extensively evaluate our approach using our pro-
posed STANCE (Style Transfer, Fine-Grained Adjustment,
and Body Part Replacement) dataset, which is developed for
three text-guided motion editing tasks. Our experimental
evaluations demonstrate that MotionReFit achieves high-
fidelity edits across all three tasks while faithfully following
the provided textual instructions. Through comprehensive
ablation studies, we find that incorporating MotionCutMix
substantially enhances the model’s generalization capabil-
ity, particularly when training data is limited. Importantly,
despite augmenting training data complexity, MotionCut-
Mix does not significantly impact the training convergence
efficiency, allowing the model to benefit from expanded mo-
tion diversity without computational overhead.

Our primary contributions are threefold:
• We present MotionReFit, the first universal text-guided

motion editing framework that achieves unrestricted edit-
ing capabilities for both body parts and temporal se-
quences. Powered by segmental motion synthesis mecha-
nism and attention-based local-global refinement strategy,
MotionReFit requires only original motion and editing in-
struction as input while delivering superior instruction ad-
herence and motion naturalness.

• We introduce MotionCutMix, a dynamic training tech-
nique that augments motion editing triplets online, en-
abling robust generalization, even with limited annotated
data.

• We contribute MotionCutMix, a motion-captured and
manually annotated dataset for three editing tasks: body
part replacement, fine-grained adjustment, and motion
style transfer, providing diverse and high-quality exam-
ples for training and evaluation.

2. Related Work
Data-Driven Motion Generation With access to large-
scale motion datasets [18, 40, 46, 50], early motion genera-
tion approaches focused on predicting future motion [3, 66].
Recent efforts have incorporated action labels and language
descriptions to enhance the relevance and specificity of gen-
erated motions [8, 19, 23, 35, 42, 55, 61, 72]. The emer-
gence of diffusion models [21, 52] has marked a significant
advancement in motion synthesis [12–14, 29, 31, 53, 56,
65, 69, 70]. Several approaches [56, 64, 69, 70] have intro-
duced motion editing capabilities. MDM [56] supports part-
level motion inpainting and temporal inbetweening, while
FineMoGen [70] leverages LLMs to interpret and execute
editing instructions. However, these methods fail to simul-
taneously handle semantic and style edits.

Motion Style Transfer Early approaches in style trans-
fer primarily relied on handcrafted features to address the
complexities of defining and manipulating motion styles [4,
58, 62]. With the advent of deep learning, contemporary
studies have favored data-driven techniques that leverage
large datasets to extract and learn style features, utiliz-
ing approaches such as GAN [15], AdaIN [2], and Diffu-
sion [11, 47, 67]. While some methods employ neural net-
works trained on explicit pairs of original and edited motion
styles [9, 24, 27, 39, 60, 63] to directly translate specific
movement patterns, others explore unpaired training strate-
gies [2, 11, 25, 28, 54] to infer style from unaligned motion
data or video inputs. However, despite these advancements
in style transfer techniques, current methodologies predom-
inantly address non-semantic motions and remain limited in
their capacity to tailor arbitrary motions based on specific
semantic textual descriptions.

Motion Editing Motion editing, while sharing similar-
ities with motion style transfer, remains comparatively
under-explored. Early research focused on specific motion
attributes such as adjusting motion paths [16, 33, 36], adapt-
ing motions to different skeletal structures [1], or altering
motion-induced emotions [58].

In terms of semantic editing, Tevet et al. [55] and Holden
et al. [22] proposed embedding motion sequences into latent
vectors that encapsulate semantic information. However,
this approach faces fundamental challenges as the embed-
dings may lack the fine-grained detail necessary for precise
editing, and the latent space may not be sufficiently disen-
tangled. Recent diffusion-based approaches [32, 45, 56, 69]
have enabled editing of existing motions through inpainting
conditioned on textual instructions. However, these meth-
ods fix the joints of the remaining body parts, requiring
clear delineation of the parts to be edited.

Another significant line of research facilitates editing
through motion composition, including temporal composi-
tion [5, 49, 51, 57], spatial composition [6, 42], and com-
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Figure 2. Sample sequences from our STANCE dataset. Our work introduces three complementary datasets: (a) a body part replacement
dataset comprising 13,000 sequences from HumanML3D [18], annotated with an average of 2.1 body masks and corresponding motion
descriptions; (b) a motion style transfer dataset containing 2 hours of new MoCap recordings that recreate HumanML3D sequences in
various styles; and (c) a fine-grained motion adjustment dataset featuring 16,000 annotated triplets of generated motion pairs with their
corresponding descriptions.

prehensive timeline control frameworks [44]. Recent works
such as FineMoGen [70], Iterative Motion Editing [17], and
COMO [26] leverage foundation models for generating and
editing motion, but they fail to handle arbitrary motion in-
puts without annotation. The work most similar to ours is
TMED [7], which employs a conditional diffusion model
using both original motion and instructions as inputs, with-
out requiring additional data. However, TMED’s training
on a limited set of triplets (original, edited, and instruction)
hinders its generalizability to broader compositions, and it
does not effectively handle temporal composition.

Addressing these limitations, our method provides an
end-to-end solution that does not require additional user in-
puts while effectively handling a diverse range of motion-
instruction compositions with the capability for both spatial
and temporal edits.

3. Problem Formulation and Representations
Text-Guided Motion Editing Given an original motion
sequence Mori and an editing instruction E that specifies
desired modifications, our goal is to generate an edited mo-
tion sequence Medit that satisfies the following objectives:
• Medit should faithfully implement the modifications

specified by E , such as changes in motion style, intent,
or specific body part movements.

• Medit should maintain the integrity of Mori by preserving
aspects not explicitly specified by E .

Human Motion Representations Our approach em-
ploys two complementary representations derived from the
SMPL-X model [41]. For direct motion manipulation, we
use a keypoint-based representation MK ∈ RL×NK×3,
where L denotes sequence length and NK = 28 represents
the number of keypoints. These keypoints comprise 22 pri-
mary body joints from SMPL-X, supplemented by four fin-
ger joints (ring and index fingertips of both hands) for wrist

pose determination, and two additional head joints to cap-
ture detailed head movements. In this representation, hands
are treated as rigid bodies without detailed finger articula-
tion. For compatibility with standard motion frameworks,
we also utilize the SMPL-X parameter-based representation
MS = {t,ϕ, r}. This representation consists of root trans-
lation t ∈ RL×3, global orientation ϕ ∈ RL×3, and body
pose parameters r ∈ RL×NJ×3, where NJ = 21 aligns
with SMPL-X formulations. We use the mean body shape
by setting β to zero.

These representations are interconvertible: Forward
Kinematics transforms MS to MK, while the reverse map-
ping uses a lightweight neural network followed by opti-
mization to obtain MS from MK. For simplicity, we omit
representation superscripts when discussing motion in gen-
eral terms. Details of motion representations and their con-
versions are in Appendices B.1 and B.3, respectively.

4. Training Data Construction
This section details the construction of training triplets
{Mori,Medit, E}. We first present our proposed STANCE
dataset in Sec. 4.1. We then introduce a key motion com-
position operator in Sec. 4.2, followed by the rules for con-
structing triplets across various editing settings in Sec. 4.3.

4.1. STANCE Dataset
Our STANCE dataset introduces three specialized com-
ponents targeting common editing scenarios, as shown in
Fig. 2. Each component is carefully curated and verified
by trained human annotators. Additional details for our
STANCE dataset are available in Appendix D.

Body Part Replacement This editing type focuses on se-
mantic edits where specific body parts are modified accord-
ing to text instructions while preserving the motion of other
parts. We improve upon previous approaches like [6] that
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relied on LLMs by having human annotators analyze ren-
dered motions from the HumanML3D dataset [18] to assess
body part participation. As illustrated in Fig. 2a, sequences
can contain multiple mask sets, each annotated with de-
scriptions of the masked body part’s motion. We also in-
troduce soft masks, detailed in Sec. 4.2, to enable spatial
blending.

Style Transfer As a type of style edit, this category aims
to modify motion style without altering semantic content
based on language instructions. We address the general case
of style transfer across both locomotion and semantic mo-
tions. To overcome the lack of paired motions with identi-
cal semantics but different styles, we created a new MoCap
dataset using the Vicon system. Professional actors recre-
ated HumanML3D sequences in various styles (e.g., old,
proud, depressed), resulting in 2 hours of motion compris-
ing 750 stylized sequences.

Fine-grained Motion Adjustment This type of style edit
enables detailed modifications without semantic changes
(e.g., “raise the right arm higher”). We introduce a novel
approach that improves upon previous works like Motion-
Fix [7], which relied on TMR [43] representations for mo-
tion pairing. Instead, we utilize MLD [12] as a text-to-
motion generator to create 16 variants per instruction by
perturbing the motion latent space. These variants are
paired one-to-one, with human annotators describing the re-
quired transformations between pairs. After filtering out un-
natural motions and unclear descriptions, we obtain 16,000
high-quality annotated triplets.

4.2. Spatial Motion Blending
As illustrated in Fig. 3, spatial motion blending enables
the synthesis of novel motions by combining selected body
parts from a source motion Msrc with a target motion Mtgt,
guided by annotated masks. A mask is defined as M ⊆
{0, 1, . . . , Nj}, where j ∈ M indicates the jth joint (in-
cluding pelvis) is selected. The blending process is guided
by two annotated masks: a hard part Mhard and a soft part
Msoft, ensuring Mhard ∩ Msoft = ∅. Joints within Mhard
directly inherit rotations from Mtgt, while those in Msoft
undergo interpolation between source and target motions,
ensuring smooth spatial transitions and motion coherence.

We denote the spatial motion blending process as
BLD(Msrc,Mtgt, {Mhard,Msoft}). The resulting blended
motion Mbld = {tbld,ϕbld, {rbld

j }NJ
j=1} is computed follow-

ing these rules for each joint j:
rbld
j = rtgt

j if j ∈ Mhard

rbld
j = SLERP(rsrc

j , rtgt
j , α) if j ∈ Msoft

rbld
j = rsrc

j if j /∈ Mhard and j /∈ Msoft

where rsrc, rtgt, and rbld represent joint rotations in the
source, target, and blended motions respectively. The inter-

Source motion Target motion
Blended motion

(w/o soft mask)

Blended motion
(w/ soft mask)

Hard mask:
left arm

Soft mask:
head

Hard mask:
upper body

Soft mask:
spine

(unplausible)

(unnatural)

Figure 3. Illustration of spatial motion blending. We compare
hard and soft masking approaches, showing how soft masks enable
smoother transitions between body parts and eliminate unnatural
artifacts at motion boundaries.

polation employs Spherical Linear Interpolation (SLERP)
with a factor α, which is randomly varied during training to
increase motion diversity.

The global properties of the blended motion—
orientation ϕbld and translation tbld—are determined by the
lower body motion. When the pelvis is included in Mhard,
the root pose follows Mtgt; otherwise, it inherits from Msrc.
This approach ensures consistency between the pelvis and
the dominant lower body motion.

4.3. MotionCutMix
We propose MotionCutMix, a training technique that aug-
ments the limited motion data for training by leveraging
variants from a larger motion database, which can be unan-
notated. Inspired by image augmentation [68], Motion-
CutMix generates synthetic training samples through spa-
tial motion blending on the training data. This enables
the model to learn from diverse examples, capture high-
level dependencies between original and edited motions,
and enhance editing performance even with limited anno-
tated training data.

MotionCutMix applies universally to both semantic and
style edits, though with different composition rules. For se-
mantic edits, MotionCutMix randomly selects Msrc from
the large motion base and Mtgt from the dataset with body
mask annotation. The training triplet {Mori,Medit, E} con-
sists of Mori = Msrc and Medit = BLD(Msrc,Mtgt,Mtgt),
where Mtgt is the body mask annotated to Mtgt. The edit-
ing instruction E is associated with Mtgt, describing how
the masked body part changes from Msrc to Mtgt.

Style edits present a different challenge since their
parts requiring edits are already paired and cannot be ran-
domly composited. To enable the model to learn gener-
alized editing from limited data pairs, we split the edit-
ing into lower and upper bodies. For a source-target
motion pair from the annotated dataset, MotionCutMix
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Figure 4. Overview of MotionReFit. Our auto-regressive approach processes the original motion through sliding windows, where body
keypoints are encoded for input to a transformer-based motion diffusion model. To ensure motion continuity, noise is applied starting
from the third frame while preserving the first two frames. The model incorporates an additional token integrating the editing instruction,
diffusion step, and progress indicator. The generated keypoints undergo SMPL-X optimization and merging to create the final edited
motion. To enhance body part coordination, we employ a discriminator trained to identify motion segments composed of multiple source
motions, which guides the denoising process through classifier guidance.

randomly substitutes the non-edited body part of both
Msrc and Mtgt with the same motion sequence Mext se-
lected from an extra motion base. The blended pairs be-
come Mori = BLD(Mext,Msrc,Medited-part) and Medit =
BLD(Mext,Mtgt,Medited-part), while E describes the style
change on specific body parts.

MotionCutMix effectively creates NL × NS original-
edited pairs from NS annotated motion triplets, where NL

denotes the size of the large motion base. By exposing the
model to diverse motion combinations, MotionCutMix en-
ables better generalization and adherence to editing instruc-
tions.

5. MotionReFit
Our model performs end-to-end editing on arbitrary input
motion by leveraging MotionCutMix for creating training
triplets. As shown in Fig. 4, the framework consists of
three key components: an auto-regressive motion diffusion
model, a body part coordinator, and multiple condition en-
coders.

5.1. Motion Diffusion Model
At the core of our approach is an auto-regressive conditional
diffusion model that generates edited motion segment by
segment, guided by the original motion and text instruc-
tion. The model processes keypoint-based representations
of human motion segments Ml:l+W , where l denotes the
start frame and W is the window size. For notation simplic-
ity, we refer to M as “the motion in the current segment”
throughout our discussion. Each segment M is transformed
to a local coordinate system based on the root transforma-
tion of its initial frame, as detailed in Appendix B.2.

Following the Denoising Diffusion Probabilistic Mod-
els (DDPM) [21] framework, we implement a forward dif-
fusion process as a Markov Chain that progressively adds
noise to clean edited motion segments Medit over T steps.
Using Mt to denote the noisy version of Medit at diffusion
step t, the noise addition process follows:

q(Mt|Mt−1) = N (Mt;
√

1− βtMt−1, βtI), (1)

where βt ∈ (0, 1) is a variance schedule controlling noise
magnitude per step, and I is the identity matrix.

The reverse denoising process is learned by a network
ϵθ (Appendix B.4), which sequentially denoises samples
across T steps starting from MT ∼ N (0, I). Following
Ho et al. [21], we train the model by minimizing the Mean-
Squared Error (MSE) between predicted and added noise:

L = EM0∼q(M0|C),t∼[1,T ]||ϵ− ϵθ(Mt, t, C)||22. (2)

The conditional terms C = {Mprev,Mori, E ,P} com-
prise: (i) two frames of motion Mprev right before the cur-
rent segment, encoded via MLP without noise processes;
(ii) the original motion segment Mori; (iii) the editing in-
struction encoded through CLIP [48]; and (iv) a progress
indicator P representing the normalized starting frame po-
sition within the edited motion [30] using sinusoidal posi-
tional encoding [59].

To strengthen the model’s adherence to editing instruc-
tions, we use classifier-free guidance [20] with weight w:

ϵ̃θ(Mt, t, C) = (1+w)ϵθ(Mt, t, C)−wϵθ(Mt, t, C′), (3)

where C′ = {Mprev,Mori,∅,P} represents the conditional
terms with the instruction removed.
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5.2. Body Part Coordinator
Training on composed motion data introduces a critical
challenge: generated motions may exhibit incorrect coor-
dination patterns, such as synchronized movement of same-
side feet and hands during walking. To address this, we
introduce a motion discriminator D that provides classifier
guidance to the diffusion model, ensuring natural coordina-
tion between body parts.

The discriminator is trained to classify motion segments
as either coherent (uncomposited) or artificially composed.
We construct a training dataset where 50% of samples
come from unmodified source motion segments in the Hu-
manML3D dataset [18], while the remaining 50% are syn-
thetically created by compositing body parts from different
motion segments. Through this balanced training approach,
the discriminator learns to identify subtle coordination pat-
terns that distinguish natural from composited motions.

During the motion generation process, we integrate the
trained discriminator as a classifier guidance:

M̃0 = M̂0 + λ∇M̂0
D(M̂0), (4)

where M̂0 = ϵ̃θ(Mt, t, C) is the model’s output, M̃0 repre-
sents the motion segment after applying classifier guidance,
λ controls the guidance strength, and ∇M̂0

D(M̂0) is the

discriminator’s gradient with respect to M̂0. To refine body
part coordination while preserving the overall motion struc-
ture, we apply this classifier guidance during the final 20
steps of the auto-regressive sampling process.

6. Experiments

6.1. Evaluation Settings

Tasks and Datasets Our main experiments evaluate two
key tasks: body part replacement (semantic edits) and style
transfer (style edits), as detailed in Sec. 4.1. We assess all
methods using our task-specific datasets, split into train-
ing (80%), validation (5%), and testing (15%) sets. For
training data preparation, we create triplets (original mo-
tion, edited motion, instruction) from our STANCE dataset
using composition rules in Sec. 4.3. The training set of
HumanML3D [18] serves as our extensive motion base for
MotionCutMix implementations. The evaluation of fine-
grained adjustment capabilities is presented separately in
Appendix C.5.

Additionally, we evaluate our method on the MotionFix
dataset [7]. For these experiments, we disable MotionCut-
Mix and configure our auto-regressive diffusion model with
a 16-frame window size.

“Walk backward”

“Crouch down 
gradually”

“Play guitar with 
upper body 
passionately”

“More playful 
movement”

“Add a sense of 
depression”

(e) Ours(d) Ours w/o MCM(c) TMED(b) MDM(a) Editing text and original motion
Figure 5. Qualitative comparison of text-guided motion editing results. Each sequence shows the original motion alongside edits by
MotionReFit and baseline methods. Motion trajectories are visualized with a color gradient from orange (starting position) to blue (ending
position), with spatial offsets applied to emphasize motion differences.
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Table 1. Quantitative comparison across body part replacement (upper) and style transfer (lower) tasks. Each metric reports mean
over 10 evaluations with 95% confidence intervals (±). Arrows (→) indicate metrics where values closer to real data are better. Bold
denotes best performance.

Method FID↓ Diversity→ FS↓ Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1→ R@2→ R@3→ AvgR→ R@1↑ R@2↑ R@3↑ AvgR↓
Real Data 0.01±.001 36.06±.436 0.98±.000 52.08±.371 54.32±.314 56.00±.365 8.28±.045 100.0±.000 100.0±.000 100.0±.000 1.00±.000

MDM-BP [56] 0.44±.030 36.71±.701 0.91±.003 69.11±.912 79.75±.711 85.14±.561 2.20±.028 39.05±.469 46.39±.441 50.57±.556 8.92±.033

TMED [7] 0.52±.034 35.37±.540 0.90±.008 38.59±1.169 44.10±.932 48.67±.911 9.31±.211 42.70±1.533 52.89±1.286 58.32±1.430 6.47±.118

TMED w/ MCM 0.54±.028 35.67±.482 0.90±.006 41.29±.631 46.13±.881 49.80±.945 9.38±.095 50.62±1.612 61.95±1.421 68.52±1.484 4.48±.1194.48±.1194.48±.119

Ours w/o MCM 0.23±.026 36.34±.620 0.96±.003 93.17±.273 96.30±.178 97.33±.206 1.27±.011 51.18±.206 53.71±.275 55.30±.371 8.51±.020

Ours w/o BC 0.23±.016 36.18±.523 0.97±.0030.97±.0030.97±.003 52.51±.595 56.03±.36856.03±.36856.03±.368 58.19±.358 7.54±.0387.54±.0387.54±.038 60.78±.471 67.17±.457 71.11±.521 4.74±.042

Ours full 0.20±.0250.20±.0250.20±.025 36.01±.75836.01±.75836.01±.758 0.97±.0020.97±.0020.97±.002 52.48±.33752.48±.33752.48±.337 56.13±.361 58.59±.23458.59±.23458.59±.234 7.46±.034 61.37±.45761.37±.45761.37±.457 68.35±.49368.35±.49368.35±.493 72.20±.31472.20±.31472.20±.314 4.65±.029

Real Data 0.01±.001 33.98±.865 0.98±.000 50.94±1.791 62.88±.925 67.40±.828 6.28±.058 100.0±.000 100.0±.000 100.00±.000 1.00±.000

MDM-BP [56] 0.39±.033 33.64±.83533.64±.83533.64±.835 0.89±.010 62.40±1.977 82.78±1.100 89.62±1.156 1.96±.062 38.89±2.152 53.51±1.167 60.24±1.122 7.14±.071

TMED [7] 1.54±.093 34.37±1.111 0.90±.010 28.44±1.156 40.03±1.173 46.53±1.280 8.48±.104 24.76±1.440 38.33±2.067 45.62±.934 8.12±.099

TMED w/ MCM 0.84±.060 34.35±.669 0.92±.004 39.83±1.522 55.00±1.608 62.92±1.46362.92±1.46362.92±1.463 5.37±.112 33.02±1.024 47.60±1.303 56.94±1.242 6.15±.072

Ours w/o MCM 0.23±.017 34.05±1.077 0.93±.006 87.05±1.345 98.33±.556 99.41±.313 1.16±.012 51.39±1.406 63.58±1.058 67.88±.699 7.15±.102

Ours w/o BC 0.16±.018 34.51±.681 0.95±.0030.95±.0030.95±.003 45.52±1.146 57.05±1.120 62.29±.810 6.57±.080 62.26±1.838 74.69±.814 79.90±1.227 3.51±.081

Ours full 0.14±.0150.14±.0150.14±.015 34.19±.865 0.94±.004 47.67±1.09947.67±1.09947.67±1.099 57.71±1.03957.71±1.03957.71±1.039 62.50±.439 6.46±.0866.46±.0866.46±.086 63.82±1.55163.82±1.55163.82±1.551 76.35±.98876.35±.98876.35±.988 80.69±1.00980.69±1.00980.69±1.009 3.48±.0623.48±.0623.48±.062

Baeslines We compare our method against two text-
guided motion editing baselines: MDM-BP [56] and
TMED [7]. MDM-BP extends the original MDM by incor-
porating body-part inpainting and ground-truth body part
information to specify fixed and edited parts. For TMED
comparisons, we maintain their original experimental set-
tings (detailed in Appendix C.2).

Ablations We conduct the following ablation studies to
analyze key components of our method:
• Ours w/o MCM: To isolate the impact of motion compo-

sition, we evaluate our method using fixed original-edited
pairs following SINC [6], without MotionCutMix during
training.

• TMED [7] w/ MCM: To assess MotionCutMix’s broader
applicability, we integrate it into TMED’s [7] training
pipeline.

• Ours w/o BC: To validate our body part coordinator, we
evaluate our method without the body part coordinator
from Sec. 5.2.

• MotionCutMix Ratio: To examine data composition ef-
fects, we vary the proportions of motion base data used in
MotionCutMix.

• Annotated Data Size: To evaluate MotionCutMix with
limited annotations, we train models with different pro-
portions of annotated data.

• Window Size: To optimize temporal processing, we ex-
periment with different sliding window sizes for auto-
regressive generation.

• Training steps: To assess data randomness effects on con-
vergence, we track performance under different Motion-
CutMix ratios during training.

Metrics We employ the Edited-to-Source Retrieval (E2S)
and Edited-to-Target Retrieval (E2T) scores from Athana-
siou et al. [7], using TMR [43] features. We report R@1,
R@2, R@3, and AvgR with 32-batch random gallery sam-

pling from the test set. For quality and diversity assess-
ment, we use Fréchet Inception Distance (FID), Foot Score
(FS) [71], Diversity, and Multimodality [56]. E2S inter-
pretation varies by task: high scores are desired for fine-
grained adjustments and MotionFix evaluations, while body
part replacement and style transfer should match reference
dataset distributions (detailed in Appendix C.3).

6.2. Comparison Results
Quantitative results in Tab. 1 demonstrate that our full
method achieves superior performance across most metrics
for both style and semantic edits. The retrieval scores in-
dicate precise editing while preserving the original context.
Qualitative results in Fig. 5 showcase our approach’s versa-
tile editing capabilities. In semantic editing, our method
successfully executes backward walking and crouching
while maintaining upper body movements, whereas base-
line methods fail to produce coherent motions. The style
transfer examples highlight our method’s sophisticated con-
trol, achieving pronounced style modifications while pre-
serving the original motion’s semantic content.

Tab. 2 presents batch-wise evaluation results on the
MotionFix benchmark. Even without MotionCutMix
augmentation, our auto-regressive approach outperforms
TMED and MDM-BP across all metrics. By processing
long sequences through fixed-length windows, our method

Table 2. Quantitative comparison with TMED [7] evaluated on
MotionFix dataset [7] using a gallery size of 32. Results show
means across 10 evaluation runs, with bold indicating best result.

Method Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1↑ R@2↑ R@3↑ AvgR↓ R@1↑ R@2↑ R@3↑ AvgR↓
Real Data 74.01 84.52 89.91 2.03 100.0 100.0 100.0 1.00
MDM-BP [56] 61.28 69.55 73.99 4.21 39.10 50.09 54.84 6.46
TMED [7] 71.77 84.07 89.52 1.96 62.90 76.51 83.06 2.71
Ours w/o MCM 83.47 90.42 92.84 1.73 66.33 80.05 84.98 2.64
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Figure 6. Ablation analyses for body part replacement (a-d) and style transfer (e-h), reporting AvgR metrics. Edited-to-Target AvgR
shown only for (d) and (h), with blue dotted lines indicating real data Edited-to-Source AvgR. Parameters studied: (a,e) MotionCutMix
ratio, (b,f) annotated data volume, (c,g) temporal window size, and (d,h) convergence patterns at varying MotionCutMix ratios. All training
converges within 800k steps.

(a) Without body part coordinator (b) With body part coordinator

Figure 7. Impact of body part coordinator on motion quality.
Examples show paired results using identical random seeds, high-
lighting how coordinator prevents unnatural synchronous move-
ments of same-side limbs (arm and leg moving forward together).

achieves both higher E2T scores for accurate editing and
better E2R scores for context preservation. This demon-
strates the effectiveness of our auto-regressive architecture
over single-step approaches. Complete evaluation results at
full-test set scale are provided in Appendix C.6.

6.3. Ablation Results
Our experiments show that MotionCutMix significantly
improves performance for both our method and TMED
(Tab. 1), demonstrating its broad applicability to motion
editing tasks. The quality improvements from our body
part coordinator are visible in Fig. 7 and quantitatively
supported by improved FID scores. Importantly, we find
that merely learning from composed data is insufficient for
proper body part coordination. Quantitative evaluation of
guidance strength λ and guidance steps count is presented
in Appendix C.4.

Our analysis through Figs. 6a and 6e reveals that per-
formance directly scales with the amount of augmented
data—increasing the MotionCutMix Ratio leads to substan-
tial gains in motion editing capabilities. When examining
data efficiency in Figs. 6b and 6f, we find that models with
MotionCutMix maintain strong performance even with re-
duced data scales compared to baseline models, indicating
reduced dependence on annotated data volume. For tem-
poral processing, our experiments in Figs. 6c and 6g iden-
tify 16 frames as the optimal window size, effectively bal-

ancing data randomness with motion coherence. Training
dynamics shown in Figs. 6d and 6h demonstrate that de-
spite introducing random variations, higher MotionCutMix
ratios consistently improve performance without compro-
mising training convergence.

7. Conclusion
This work introduces MotionReFit, a text-guided motion
editing framework that enables precise modification of body
parts and temporal segments while maintaining motion au-
thenticity. We enhance the framework with MotionCut-
Mix for dynamic training augmentation and incorporate a
body part coordinator for movement synchronization. Ad-
ditionally, we contribute STANCE, a new MoCap and re-
annotated dataset targeting three fundamental editing tasks:
body part replacement, fine-grained adjustment, and style
transfer.

Our work shows that for a specific motion editing task,
minimal annotated data is sufficient. Moreover, by reduc-
ing the need for high-quality data (e.g. MoCap data), our
approach opens up broader applications. Specifically, we
demonstrate that MotionReFit extends beyond motion edit-
ing to interactive modifications and complex compositional
motion generation in Appendix E.

Limitations Our approach exhibits limitations in pro-
cessing long-term temporal dependencies and lacks spatial
awareness for position-dependent instructions. A compre-
hensive discussion on limitations and future directions is
provided in Appendix F.
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A. Additional Qualitative Results
We show additional qualitative comparisons for three edit-
ing tasks: style transfer (Figs. A4 to A7), body part re-
placement (Figs. A8 to A11), and fine-grained adjust-
ment(Figs. A12 to A14). We highly recommend viewing
our project website for compelling demonstrations across
diverse scenarios.

B. Additional Implementation Details
B.1. Keypoint-Based Motion Representation
Our keypoint-based motion representation uses the first 22
joints from SMPL-X [41] as primary body joints. The two
additional head joints and four finger joints (ring and in-
dex fingertips of both hands) correspond to the following
SMPL-X indices:
• Joint 23: left eye smplhf.
• Joint 24: right eye smplhf.
• Joint 25: left index1.
• Joint 34: left ring1.
• Joint 40: right index1.
• Joint 49: right ring1.
These additional joints enable natural gaze behavior and
head tracking through eye joints, while fingertip joints pro-
vide enhanced control over hand poses as end-effectors.

B.2. Keypoint Canonicalization and Nomalization
We canonicalize motion segments in a y-up coordinate sys-
tem to simplify the learning space. For each training seg-
ment, we apply a transformation to the entire keypoint se-
quence that translates the first frame’s pelvis to the horizon-
tal origin (x and z) and rotates around the y-axis to align the
character’s initial forward direction with the positive z-axis.
During inference, segments are merged through decanoni-
calization. Specifically, for segment i, we align it with seg-
ment i − 1 by computing the transformation between their
connecting frames (first frame of segment i and second-to-
last frame of segment i− 1) using the Kabsch algorithm on
the rigid triangle formed by the pelvis and hip joints.

In addition to canonicalization, we normalize each spa-
tial dimension (x, y, and z) of the keypoint data to the stan-
dardized range [−1, 1] using channel-specific scaling fac-
tors. These factors are determined by the minimum and
maximum values of each channel across the dataset. We
capture 95% of the data range to compute these scaling fac-
tors with the outliers removed. During inference, we reverse
this normalization by applying the inverse scaling factors to
the model output.

B.3. Converting between Motion Representations
To convert SMPL-X parameters to keypoint representation,
we perform forward kinematics using the official SMPL-X
codebase, which transforms sequential pose parameters into

3D joint locations. We set hand and face parameters to zero
vectors to focus on core body movements.

Converting keypoint representation to SMPL-X param-
eters involves a two-stage approach. First, we standard-
ize each frame by translating the 28 keypoints to center
the pelvis at the origin. The translated keypoints (84-
dimensional input) are processed through a 3-layer MLP
(512 hidden units, ReLU activation, layer normalization) to
estimate the 66-dimensional SMPL-X body pose parame-
ters, including global orientation. Second, we refine these
initial body pose estimates and predict the global transla-
tion through optimization. We iteratively compute keypoint
locations via SMPL-X forward passes and minimize the
mean squared error between the computed and targeted key-
points. Optimization is performed for 120 iterations using
the Adam optimizer [34] with a learning rate of 0.01.

B.4. Module Details
In our motion diffusion model, noisy motion frames from
the canonicalized sequence Mt are encoded through an
MLP encoder, where a single linear layer projects the in-
put from 84 dimensions (28 joints × 3) to 512 dimensions.
The original motion sequence Mori is encoded through a
separate MLP encoder with identical architecture. We im-
plement a Transformer encoder [59] as the UNet backbone
with 6 layers, 16 attention heads, and a dropout rate of 0.1.
The encoded vectors from Mori are added frame-wise to the
encoded noisy motion to preserve reference motion infor-
mation. A conditional token combines text condition em-
bedding, progress indicator, and diffusion step embedding
for temporal context. The Transformer encoder then pro-
cesses the entire token sequence, followed by an MLP de-
coder projecting the output back to 84 dimensions.

For the body part coordinator D, we adopt a Transformer
encoder with identical architecture to our main model. The
transformer’s outputs are mean-pooled temporally and pro-
cessed by an MLP to classify whether the input motion is
spatially composed. To ensure robustness during diffusion
sampling, we inject random noise into the training keypoint
sequences, with magnitude matching the noise levels of the
last 20 diffusion steps.

B.5. Frame Rate
We downsample motion sequences to 10 FPS during train-
ing and inference for computational efficiency. For com-
patibility with standard evaluation protocols, the generated
keypoint sequences are later upsampled to 20 FPS during
SMPL-X conversion (Appendix B.3) to match the original
dataset’s frame rate.

B.6. Hyper-Parameters for Guidance
During inference, we apply classifier-free guidance [20]
with weight w = 3 to enhance conditional signals through
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linear extrapolation. For the body part coordinator, we set λ
to 1.0 and apply classifier guidance during the final 20 steps
of the auto-regressive sampling process.

C. Additional Experiment Details and Results
C.1. Training Details
In our experimental framework, all models undergo train-
ing for 1,500 epochs using the DDPM scheduler [21], with
varying numbers of diffusion steps across different meth-
ods: our approach employs 100 steps, TMED [7] uses 300,
and MDM-BP [56] requires 1,000, following their respec-
tive recommended configurations. We employ the AdamW
optimizer [38] with a learning rate of 1e-4 and a weight de-
cay of 0.01. The learning rate follows a linear decay sched-
ule. During training, we use a batch size of 1024 sequences,
with each sequence containing W frames. The training pro-
cess is conducted on a setup of 4 NVIDIA RTX 3090 GPUs,
with the entire training cycle completed within 36 hours.
The model checkpoints are saved every 50 epochs, and we
select the best model based on validation performance.

C.2. Adaption of Baselines
For baseline comparisons, we adapt MDM [56] with
inpainting-based motion editing, where specific body parts
are modified according to the provided masks. We enhance
the baseline by supplying explicit masking information and
initializing diffusion from the original motion sequence. We
introduce an important modification to the standard MDM
approach: while most of the diffusion process maintains
strict masking constraints, we release these constraints dur-
ing the final 20 diffusion steps, allowing the model to adjust
the entire body. This modification enables natural whole-
body adaptations that may be necessary for coherent motion
synthesis. For TMED [7], we maintain strict adherence to
the original implementation, utilizing the exact configura-
tions and parameters as specified in the authors’ codebase.

C.3. Dual Interpretation of the E2S Score
We argue that the interpretation of Edited-to-Source Re-
trieval (E2S) scores should be task-dependent.

For fine-grained adjustments (e.g., modifying arm raise
height), higher E2S scores are desirable as they indicate pre-
served motion characteristics with successful subtle modi-
fications. Similarly, for MotionFix dataset [7] tasks which
involve minor adjustments like refining limb positions and
trajectories, high E2S scores demonstrate proper mainte-
nance of source motion semantics.

However, for substantial editing tasks like body part re-
placement or style transfer, the E2S scores should align
with the reference dataset’s distribution rather than maxi-
mizing similarity to the source. In these cases, lower E2S
scores may actually indicate successful editing, as the mo-

tion should significantly deviate from the source to reflect
the intended modifications. The accuracy of these major
changes should instead be evaluated through the Edited-to-
Target Retrieval score, which measures alignment with the
target characteristics.

C.4. Ablation Results of Classifier Guidance
In Fig. A1, we evaluate how body part coordinator performs
across different hyper-parameters. The x-axis shows guid-
ance strength λ, while the y-axis indicates the number of
steps where classifier guidance is applied. We report both
E2T AvgR (upper) and FID (lower) for the body part re-
placement task. Setting λ = 1.0 and applying 20 guidance
steps produces optimal results.
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Figure A1. Ablation results on classifier guidance. We illustrate
the E2T AvgR (upper) and FID (lower) performance of MotionRe-
Fit for the body part replacement task. The x-axis represents guid-
ance strength, whereas the y-axis depicts guidance steps count.

C.5. Results of Fine-Grained Adjustment
Quantitative results in Tab. A1 demonstrate that our full
method achieves superior performance across most metrics
for the fine-grained adjustment task. The retrieval metrics
reveal that the motion characteristics have been maintained,
with successful fine-grained adjustments.
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Table A1. Quantitative comparison on fine-grained adjustment task. For each metric, we repeat the evaluation 10 times. Arrows (→)
indicate metrics where values closer to real data are better. Bold denotes best performance.

Method FID↓ Diversity→ FS↑ Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1↑ R@2↑ R@3↑ AvgR↓ R@1↑ R@2↑ R@3↑ AvgR↓

Real Data 0.02 30.57 0.97 39.54 54.65 61.16 5.53 100.0 100.0 100.0 1.00
MDM-BP [56] 0.62 32.70 0.92 28.12 34.38 38.02 10.41 16.45 24.52 30.21 11.60
TMED [7] 0.33 31.13 0.94 60.16 72.66 82.03 2.66 29.69 44.01 52.08 6.97
TMED w/ MCM 0.33 31.42 0.94 62.8 74.78 87.0 2.61 32.22 45.03 54.83 6.56
Ours w/o MCM 0.34 31.08 0.95 81.77 92.45 93.49 1.48 34.11 48.70 57.03 5.77
Ours full 0.29 31.29 0.95 85.16 92.97 95.31 1.38 42.45 56.25 62.76 5.12

Table A2. Ablation analysis for fine-grained adjustment. Results show means across 10 evaluation runs, with bold indicating best result.

Method FID↓ Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1↑ R@2↑ R@3↑ AvgR↓ R@1↑ R@2↑ R@3↑ AvgR↓

1% MCM 0.34 81.77 92.45 93.49 1.48 34.11 48.70 57.03 5.77
5% MCM 0.37 86.72 95.57 97.14 1.30 34.17 50.00 57.81 5.65
10% MCM 0.31 82.81 92.71 95.31 1.42 37.24 51.30 59.11 5.32
20% MCM 0.29 85.68 91.93 94.27 1.45 39.06 52.08 60.68 5.36
12% data 0.32 81.51 91.67 94.53 1.56 40.10 58.07 67.71 4.74
24% data 0.31 82.03 92.19 95.83 1.42 41.93 59.11 67.45 4.71
60% data 0.30 84.90 92.45 96.09 1.38 41.67 55.47 63.54 5.02
Ours full 0.29 85.16 92.97 95.31 1.38 42.45 56.25 62.76 5.12

Table A3. Quantitative comparison with TMED [7] on MotionFix using the full dataset [7]. Results show means across 10 evaluation
runs, with bold indicating best result.

Method FID↓ FS↑ Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1↑ R@2↑ R@3↑ AvgR↓ R@1↑ R@2↑ R@3↑ AvgR↓

Real Data 0.010 0.98 20.83 33.66 40.47 33.13 64.36 88.75 95.56 1.74
MDM-BP [56] 0.145 0.90 30.21 36.82 40.47 106.05 8.69 14.71 18.36 180.99
TMED [7] 0.129 0.92 22.41 34.45 40.57 31.42 14.51 21.72 28.73 56.63
Ours 0.120 0.96 43.77 56.72 64.13 24.09 14.13 23.52 30.53 54.06

Tab. A2 presents quantitative comparisons between our
method and ablation variants on the fine-grained adjustment
task. While increasing the MotionCutMix Ratio generally
enhances results, we find that a lower ratio of 5% actually
achieves optimal performance, outperforming higher ratios
including 100%. This phenomenon can be attributed to the
inherent consistency of editing patterns across fine-grained
motion adjustments. Additionally, our experiments show
that varying the size of the annotated dataset produces only
marginal differences in performance metrics. This finding
suggests that our method achieves effective generalization
even with a smaller annotated dataset, likely because our
large-scale training set already encompasses a comprehen-
sive range of fine-grained adjustment scenarios.

Figs. A12 to A14 showcase visual comparisons between
our method and ablations across diverse editing instruc-
tions, demonstrating our full method’s superiority in pro-
ducing precise and natural motion edits.

C.6. Results on the MotionFix Dataset
Evaluation Settings For TMED [7] compatibility, we
use a 22-keypoint representation aligned with the SMPL
model [37], instead of the 28-keypoint SMPL-X format
used in our main method. The conversion process between
keypoint representation and SMPL parameters remains sim-
ilar to the one described in Appendix B.3.

For our auto-regressive framework, we preprocess the
MotionFix dataset by segmenting continuous motions into
clips and applying canonicalization. For retrieval-based
metrics evaluation, we use the original TMR check-
point [43] to ensure consistent comparison with previously
reported results.

Comparison on the Entire Test Set Tab. A3 shows full-
scale evaluation results on the MotionFix benchmark com-
paring our method against TMED and MDM baselines.
Consistent with the batch-wise evaluation, our method
demonstrates superior performance in both E2T scores for
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Table A4. Breakdown of inference time on a single RTX 3090
GPU. Our optimal setting achieves real-time inference speed.

Window
size

Diffusion
sampling

Body part
coordinator

SMPL-X
optimization

Total
(seconds)

FPS

2-frame 0.142 0.014 0.067 0.223 8.97
8-frame 0.355 0.036 0.106 0.497 16.10
16-frame 0.474 0.046 0.126 0.646 24.76

editing accuracy and E2S scores for motion preservation.
Most notably, we achieve substantially higher foot contact
scores, indicating significantly improved physical plausibil-
ity and overall motion quality.

For detailed qualitative comparisons and motion visual-
izations that further illustrate these improvements, we direct
readers to Appendix A.

C.7. Real-Time Inference
In Tab. A4, we provide a breakdown of inference time on a
single RTX 3090 GPU. Despite the auto-regressive nature,
inference with a 16-frame window size (our optimal setting)
achieves real-time speed. Furthermore, the motion coordi-
nator is applied only during the final few diffusion steps,
adding minimal overhead to the overall computation.

D. Additional Details on the STANCE Dataset

D.1. Body Part Replacement
Our body part replacement subset extends Hu-
manML3D [18] through a two-phase annotation process
capturing both body part participation and detailed motion
descriptions.

Mask Annotation The first phase focuses on mask anno-
tation, where we developed specialized visualization soft-
ware to streamline the annotation process. As shown in
Fig. A2, this tool renders HumanML3D motion sequences
in 3D and offers annotators a selection of predefined body
part masks and their combinations. Annotators can play,
pause, and scrub through the animation while making their
selections based on direct visualization of the motions. For
each sequence, annotators identify which body parts are ac-
tively participating in meaningful movements, as opposed
to parts that remain relatively static or perform only sup-
porting motions. This visual-based annotation approach
distinguishes our dataset from previous works that rely
solely on language model interpretation of text descrip-
tions to determine body part involvement [6]. We employed
five trained annotators who processed sequences from Hu-
manML3D, resulting in multiple mask annotations per se-
quence.

Detailed Annotation The second phase involves creating
detailed descriptions for the movements of designated body
parts. We initialize this process using GPT-4 to obtain the

Figure A2. Screenshot of our annotation software.

original HumanML3D motion descriptions and specific in-
structions to focus on particular body parts while excluding
others. For example, given a motion described as “a per-
son walks forward while waving their arms,” and focusing
on the arms, the LLM might generate “waves arms enthusi-
astically from side to side.” These initial descriptions then
undergo careful refinement by human annotators who en-
hance their accuracy, naturalness, and linguistic diversity.
This combined approach leverages both automated assis-
tance and human expertise to create approximately 13,000
rich, precise annotations of body part movements. Each
motion sequence receives 2-4 different body part-specific
descriptions, creating a diverse set of potential editing tar-
gets.

D.2. Motion Style Transfer
We construct a motion style transfer dataset by profession-
ally recreating sequences from HumanML3D [18] using
the high-fidelity Vicon motion capture system. In our cap-
ture sessions, we enlisted trained performers who were in-
structed to replay selected HumanML3D sequences while
incorporating specific style variations. They first familiar-
ized themselves with the original motions through video
playback and practice sessions, then executed each motion
multiple times with different stylistic interpretations. The
capture setup consisted of 12 Vicon cameras operating at
30 fps, positioned strategically around a 6 × 6 meter cap-
ture volume. Performers wore a standard 53-marker Front-
Waist set for full-body tracking, ensuring accurate capture
of subtle stylistic nuances.

We focused on distinct style categories: proud, old, play-
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ful, depressed, and angry, with each performer interpret-
ing these styles based on provided style guidelines. From
180 base motions selected from HumanML3D, we cap-
tured each motion in all five styles, resulting in a dataset
of 900 high-quality motion sequences after post-processing
and cleanup. Each sequence is paired with its original
HumanML3D counterpart and annotated with detailed de-
scriptions of the stylistic differences, creating style transfer
triplets suitable for training and evaluation.

D.3. Fine-Grained Adjustment
We introduce a novel text-to-motion generation approach
for obtaining semantically consistent motion pairs. We cu-
rate 5,000 base instructions spanning common human ac-
tions (walking, running, dancing, sports activities). For
each instruction, we generate the initial motion using
MLD’s standard sampling process [12]. To create variants,
we additionally apply Gaussian noise (σ = 0.1) to the la-
tent space, creating 16 slightly different but semantically
consistent variations for each base motion. These variants
maintain the core action while exhibiting subtle differences
in execution style, speed, or range of movement.

The variants are then paired one-to-one, creating 8 pairs
per instruction. Trained annotators carefully examine each
pair and describe the specific modifications needed to trans-
form the original motion into the edited motion. The an-
notations focus on precise, actionable descriptions such as
“bend the knees more deeply,” “perform the arm swing
with greater force,” or “slow down the spinning movement
slightly.” To ensure dataset quality and clarity, we imple-
ment a rigorous filtering process where triplets with unnat-
ural motions (e.g., physically implausible movements) or
unclear editing descriptions are discarded. Additionally, we
maintain a balanced distribution across different motion cat-
egories and editing types to prevent dataset bias.

This systematic approach results in a large-scale dataset

of 16,000 annotated triplets, each consisting of an original
motion, an edited motion, and a clear instruction for the
required modification. The dataset covers a wide range of
fine-grained adjustments, including changes in motion am-
plitude, speed, force, and spatial positioning of body parts.

E. Compositional Applications

As shown in Fig. A3, our method enables both interactive
editing and complex compositional motion generation, ad-
vancing beyond simple motion modifications. This capabil-
ity distinguishes our approach from prior works that address
only specific editing scenarios or isolated modifications.

E.1. Time-Variant Motion Editing

We enable time-variant motion editing through different
text instructions. Users can independently modify distinct
motion segments by applying different instructions to spe-
cific frame ranges. For instance, users can specify “raise
right hand higher” for the first 25 frames, followed by
“lower the right hand” for subsequent frames. This fine-
grained control is implemented by iteratively calling the
auto-regressive model with the first instruction until frame
25, then continuing with the second instruction from frame
25 onward.

E.2. Interactive Motion Modification

Our model supports interactive motion modification by us-
ing previously edited motions as input for subsequent pro-
cesses. Users can build upon earlier edits by feeding the
modified motion back into the model with new instructions.
For example, after raising an arm, users can further ad-
just its position by applying additional modifications to the
edited motion. This sequential editing process enables pro-
gressive refinement until the desired motion is achieved.

Lower both arms

Change upper body 
to playing guitar

Lower body moves 
with rhythm of guitar

Do warm up

Move restlessly

Stand on one leg

Practice Kongfu

(a) Sequential editing

(b) Temporal specific editing

(c) Motion style transfer

Figure A3. Compositional applications performed by our method.
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E.3. Compositional Motion Generation
Our model enables compositional motion generation
through time-variant motion editing and interactive motion
modifications. Starting with a base motion, users can layer
multiple actions by applying sequential edits. For instance,
to create a motion of simultaneously drinking water and
reading, users first modify a standing pose with “drink wa-
ter” followed by “reading the book using the other hand”
applied to the resulting motion.

F. Limitations and Future work
While our method demonstrates strong performance across
various editing tasks, it does have several notable limita-
tions that warrant discussion. (i) Our approach shows re-
duced effectiveness when handling complex temporal de-
pendencies in motion sequences, such as sequential actions
(e.g., a number of crouch-stand cycles). (ii) Our model
struggles with instructions that require comprehension of
spatial relationships (e.g., return to the starting point after
forward movement). (iii) While the model performs well on
editing patterns similar to those in the training data, its be-
havior with novel or significantly different editing instruc-
tions remains unexplored.

Future work could focus on: (i) Enhancing the model’s
spatial-temporal understanding to better handle more com-
plex motion sequences and editing instructions (e.g., adopt-
ing motion representations from works that separately con-
sider body parts). (ii) Incorporating physics-based con-
straints to ensure physical plausibility in extreme editing
cases.
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“Express emotional 
bleakness”

“Wave like an old 
person”

“Show pride”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A4. Comparison with baselines and ablations on style transfer.
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“Act more tired”

“Be more lively while 
playing violin”

“Move with anger”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A5. Comparison with baselines and ablations on style transfer.
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“Angrily raise hands 
in protest”

“Stand proudly”

“Act more cheerfully”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A6. Comparison with baselines and ablations on style transfer.
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“Raise both hands 
while looking sad”

“Hunch over like an 
old person”

“Move more 
energetically”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A7. Comparison with baselines and ablations on style transfer.
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“The lower body walks 
forward”

“The lower body 
performs squats”

“The lower body is 
balanced on one leg 
while the other swings”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A8. Comparison with baselines and ablations on body part replacement.
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“Walk normally with a 
straight back”

“The upper body 
extends and swings”

“The lower body 
moves in a circular 
pattern, alternating 
directions”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A9. Comparison with baselines and ablations on body part replacement.
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“The person swings 
both arms in large 
circles”

“The lower body 
moves sideways to 
the left”

“The upper body 
stretches”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A10. Comparison with baselines and ablations on body part replacement.
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“The person playing 
the violin while 
climbing stairs”

“The upper body is 
engaged in boxing 
movements”

“The person bends 
and interact with a 
dog”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A11. Comparison with baselines and ablations on body part replacement.
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“Lift the other leg and 
kick out”

“Perform a sudden 
jump”

“Swing a single arm”

“Run to the other side”

“Wave the other arm”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A12. Comparison with ablations on fine-grained adjustment.
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“Lower both arms”

“Stand still”

“Walk in place”

“The body jumps 
twice”

“The arm stretches 
out straighter”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A13. Comparison with ablations on fine-grained adjustment.
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“Move with larger 
movements”

“Raise your hands 
higher”

“Lower your arm 
slightly”

“Crossing legs”

“Stand up”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A14. Comparison with ablations on fine-grained adjustment.
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